Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.
Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.
В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.
Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.
Конечно, это не приговор - всеголишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.
Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.
Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.
В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.
Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.
Конечно, это не приговор - всеголишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.
Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?